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ABSTRACT

The viscous, radiating hypersonic flow past an axisymmetric

blunt body is analyzed based on the Navier-Stokes equations, plus a

radiative equation of transfer derived from the Milne-Eddington dif-

ferential approximation. The fluid is assumed to be a perfect gas with

constant specific heats, a constant Prandtl number, P, of order unity,

a viscosity coefficient varying as a power, w, of the temperature, and

an absorption coefficient varying as the first power of the density

and as a power, n, of the temperature.

The gray gas assumption is invoked, thereby making the absrp-

tion coefficient independent of the spectral frequency. Limiting

forms of the solutions are studied as the freestream Mach number,

M, freestream Reynolds number, R, and the temperature ratio across

the shock wave, F = eM, go to infinity, and as the Bouguer number,

Bu, and the density ratio across the shock wave, e = (y-l)/(y+l), go

to zero.

The method of matched asymptotic expansions is used in the anal-

ysis, and it is shown that there is a far-field precursor, composed of

two regions, in which the fluid mechanics can be neglected for all

practical purposes but are included for completeness. Also found is

a near-field precursor in which the temperature rises to its shock

structure order of magnitude. The high temperature in this region,
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due to radiation transfer, causes the next region, the outer region

of the shock structure, to be thicker by O(r ) than the outer region

without radiation. Next follows the middle and inner regions of the

shock structure, with solutionsdiffering only in the constants of

integration from those found for the non-radiative problem. A radia-

tion relaxation region between the shock structure and shock layer is

now needed in order that radiative equilibrium can be obtained. The

shock layer is unchanged from the non-radiative problem, except for

the addition of I = T , and has two or three regions, depending on the

ratios of the viscous to inviscid terms.
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Chapter I

INTRODUCTION

The purpose of this paper is to isolate the important parameters

of a viscous, radiating hypersonic flow past a blunt body of arbitrary

shape. Much confusion and discussion have existed as to the importance

of the radiative term's contribution to the energy equation in the

various flow regions from the precursor field immediately ahead of

the shock wave to the body surface, i.e., references [13] and [17].

In order to isolate the parameters, and the role they play, and

to make the problem tractable, the gas is assumed to be perfect with

an absorption coefficient that is independent of spectral fr eque~cy

(the gray gas assumption). The gray gas assumption is a serious one

in that spectral detail in the problem is completely omitted, which

could allow the gas to range from a high absorption at one frequency

to a low absorption at another frequency, thereby having absorptioi

properties ranging from optically thick to opticaly thin in the same

flow region. On the other hand, the gray gas assumption yields the

problem analytically tractable, thereby allowing the functional be-

haviors of the various flow quantities from the freestream to the body

to be found. If spectral detail were included, provided it were

known, only numerical results could be hoped for, which would give no

indication as to how the various flow quantities interact with each
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other, Heaslet and Baldwin [i)]. Figure 1 gives the results of

Heaslet and Baldwin for the strong shock case. The parameter K/K'

corresponds to the inverse of the Boltzmann number that is used in the

present analysis.

Most analyses up to now have assumed that the various regions of

flow. were either optically thick (the Rosseland approximation) or op-

tically thin (the Planck approximation), Emanuel [6], Jische [12] ,.

Burggraff [2], and Olfe [15]. The thick and thin approximations are

the lower and upper limits, respectively, of the photon mean free path

and therefore are even more restrictive than the gray gas assumption.

These two approximations have the additional serious drawback that one

of the two conditions for similarity is eliminated. More specifically,

the thick and thin approximations identically satisfy the rdieti~re

transfer equation, thereby eliminating the Bouguer number, inverse

characteristic optical length, and its importance as a similarity

parameter. Although the Bouguer number appears in the energy equation

it appears only in the ratio of Bouguer number to Boltzmann number.

On the other hand, the condition for "full similarity" is the equiva-

lence of the ratio Bu/Bo and the Bouguer number. In the present treat-

ment, the full coupling of the fluid mechanics and radiative transfer

are used, with the details of the analysis being the determining factor

as to whether or not the set of equations are radiatively thick,

coupled, or thin for a given flow region.

The problem treated here uses as its starting point the problem

treated by Bush [3], with the exception that radiation is included in

the equations of motion, so that changes in the flow quantities in the
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various flow regions due tb radiation, as well as the need for addi-

tional regions, must be considered. For this case the.Boltzmann num-

ber (ratio of the convected energy to the radiated black body energy

at stagnation conditions), Bo = (p U C T )/cTo , is of order one,

the freestream Mach number, M = U /(Y /p,) , and the Reynolds number,

R = (p U a)/ , go to infinity, and the density ratio, E = (y-l)/(y+l),

the Bouguer number, Bu = ? a, and Q = BuFn+w/CR (ratio of the molecular

mean free path to the photon mean free path at shock layer conditions),

go to zero.

Since, consistent with the radiating hypersonic blunt body pro-

blem, the freestream Bouguer number is very very small, it is required

-that a precursor field ahead of the body have a large scale thickness
_ ' " In [,]L]

of the order Bu - 010 body radii, Nelson and G *-clard 1 . This

extremely large region precludes any chance of applying a Lhin layer

analysis to it. (A region such as this is physically consistent with

the fact that an observer at a large distance from the body can "see"

a body under these conditions due to the photons emitted from the

shock layer of the body.) It should also be noted that this "far-

field precursor" is two-dimensional in nature and the equations are

those of the field type. This is true .because the addition of the

equation of radiative transfer makes the entire set of equations of

motion elliptic rather than hyperbolic, which is normally.true for

the region ahead of the shock in hypersonic flow. In view of this

extreme analytical difficulty, the far-field precursor will simply be

assumed to be one-dimensional in which an exponent approximation is
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valid. Thus the far-field precursor is found to have two regions

which are designated as the exterior and the interior regions.

As the flow approaches the body, more photons are absorbed by

the gas and consequently the temperature, pressure and intensity in-

crease. In the case under consideration, the gas temperature rises

to the shock layer order of magnitude, although still smaller by a

constant multiple less than one, Heaslet and Baldwin [11. With this

relatively high temperature, the gas is capable of absorbing and emit-

ting in a thin region ahead of the shock structure. This region is

referred to as the "near-field precursor" and is the first thin re-

gion in the flow field, and thus the first that can be considered

without using a one-dimensional approxi rm o. This region has a

scale thickness of order (l/Burn)<<1 with the velocity components

and density having only correction terms. Figure 2 gives the sche-

matic for the flow region.

The optically thin outer region of the shock structure, with

thickness O(I/R), is expected to be the next region, but the in-

creased temperature causes this layer to be thicker by Fr and con-

sequently the corrections on the velocity components and density are

different from the corrections for the conventional outer region.

Since this region is now of the same scale thickness as the middle

region,O(rW/R)<<l, it is expected that they would have a different

effective thickness. In the analysis it is shown that the middle

region has an effective thickness equal to O(FFU/R)log R/Burn+Wo It

should be noted that the outer region does not 0'see"' freestream
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infinity when looking upstream and thus the boundary conditions for

the fluid mechanical shock are not found in the conventional way. Now

the precursor-induced conditions, due to the upstream heating of the

gas, are the conditions to which the fluid mechanical shock must be

matched.

The middle region of the shock structure is the next region of

flow after the outer region. The scalings and solutions are the same

as those found by Bush [3] with the exception that a constant of

integration appears in the temperature and pressure solutions. The

equation of radiative transfer shows that this region, which has a

scale thickness of O(rW/R), is optically thin, Vincenti and Kruger

[21]. (Since the inner region of the shock structure has a scale

thickness equal to O(erW/R), it will also be optically thin.) Since

this middle region is optically thin, the intensity is scaled as a

correction to the value it has previously obtained.

The next region after the middle region is the inner region, as

found by Bush [3]. The scalings, thickness and solutions of the re-

gion are the same as for the nonradiatirig problem. The intensity is

still scaled as a constant plus a correction. Since the inner region

is thin in order of magnitude, it "sees" an infinity when looking down-

stream, and therefore the fluid mechanical shock conditions, consistent

with the flow conditions, are found as in the nonradiating case. In

the strict mathematical sense, the inner region does not match to the

radiation relaxation region, which is the next region in this analysis.

In order to match these two regions, higher order terms must be in-

cluded and the reader is referred to Bush 4)] for the matching.
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Between the shock structure and the shock layer a new region is

present. This region is referred to as the radiation relaxation re-

gion and is one which allows the intensity to equilibrate with its

equilibrium conditions, Heaslet and Baldwin [i . The fluid mechanics

of this region are minimal. The scale thickness of this region is

O(e/Bu o), which is much larger than the middle region thickness,

O(rU)/R). This is a result of the fact that the photon mean free path

is much larger than the molecular mean free path as shown by Bond,

Watson and Welch [i] and Zel dovich and Raiser [22]. Also since

Burn>>o(1), the following ordering 'sequence occurs: rW/R << e/Burn<<e.

Since K = FW/eR - 0 implies that the shock layer can only be inviscid,

Bush [-j, i.e., the possibility of the viscous shock layer, K = 0(1),

is eliminated. The radiation relaxation region "sees" an infinity

when looking toward the body, and therefore a second set of shock con-

ditions due to the radiation effect are found. Thus the near-field

precursor region and the radiation relaxation can be thought of as the

radiation shock, with its appropriate boundary conditions, and the

outer region, middle region and inner region of the shock structure

can be thought of as the fluid mechanical shock, with its appropriate

boundary conditions, imbedded within-the radiation shock. This double

shock is referred to as a shock within a shock by Vincenti and Kruger

[21].

The shock layer follows the radiation relaxation region, and for

the flow conditions it is optically thick and in radiative equilibrium

with the surroundings. The scalings and order of magnitude thickness
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are the same as found by Bush [3] and the shock layer has two or three

distinct layers for the same reasons as in the nonradiating problem.

Table 1 summarizes the shock layer. The only difference is the in-

tensity as an independent variable.

TABLE 1

K = W/sR - O D = r W/5/2

D = 0(1) inviscid shock layer
+ viscous body layer

D - 0 inviscid shock layer
+ inviscid body layer
+ viscous boundary layer

To summarize: the exterior region of the far-field precursor

has thickness of 0(l/Bu) >> 1 and the interior region of the far-field

has scale thickness of 0(1./Bu) and an effective thickness of

O(l/Bu)log r 3 >> 0 (1/Bu). The near-field precursor has a thickness

of 0(1/Burn) << 1 and the outer region of the shock structure has a

thickness of O(FC/R) << O (1/Burn). The middle region is O(r'/R) in

scale thickness but has an effective thickness of O( W/R)log(R/Bur n + )

>> 0 (rw/R). It is also true that O(rw/R)log(R/Burfn+ ) << O(1/Burn)

For the inner region the thickness is O(eFr/R) << O(rW/R) since e - 0.

In the relaxation region the thickness is O(l/Burn) >> 0(r/R).
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Chapter II

THE EQUATIONS OF MOTION

Consider the hypersonic flow of a viscous, radiating gas past an

axially symmetric blunt body. An orthogonal curvilinear coordinate

system, with the body surface as reference, is used. Let xl = ax and

yl = ay, respectively, represent the distance measured along the body

from the stagnation point and the distance measured normal to the body

at the corresponding xl location. The length, a, is the nose radius

of the body, Figure 3.

With the above non-dimensionalization, the curvature of the body

surface and the body meridian radius become, respectively, rl = K/a

and B1 = aB. The velocity components in the xl and yl directions,

respectively, are ul = U u and v 1 = Uv and the pressure, density,

temperature, and intensity, respectively, are pl = Pmp , Pl = Pp,
41 4

T = T T, and I = aT I. The quantities U , Po, P., T , and aTo ,

respectively, are the freestream velocity, pressure, density, temper-

ature, and the black body radiation present in the stagnation region.

A perfect gas is assumed (p = pT)-having constant specific heats

(Cv, C pl, and y = C p/C 1 = const.). The Prandtl number is assumed

to be of .order one, P = 0(1), with the viscosity coefficient being

proportional to the power, w, of the absolute temperature,

(Pl '= ) = T e) , where s < 3/2. The radiative absorption coef-

ficient is assumed to be independent of spectral frequency (the gray
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gas assumption) and proportional to the first power of the density and

the power, n, of the temperature (al = o  = aPTn). For molecular

radiation of a monotonic gas, n = 6, Thomas 18], Goulard [9], and

Penner and Olfe [16].

The Navier-Stokes equations are assumed to be valid. The radi-

ative pressure terms in the momentum and energy equations have been

neglected, since they are negligible in all regions of flow considered,

Goulard [8]. The addition of the radiative term to the energy equation

is therefore the only change that is necessary to the continuity, mo-

mentum and energy equations that are valid for nonradiating flows. An

additional variable, the intensity, requires the inclusion of a radi-

ative equation of transfer. This is accomplished by using the Milne-

Eddington differential approximation:

ax y 1l y x sin; + ql COSP

1 1 ( 1 1 sCP)
h a q yl rla 1r

1 1=

h bx1 '1 xl'

Ii
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The components of the radiative heat flux vector are eliminated by

differentiation in favor of the integrated intensity, thus yielding:

l a
l  

of 1 r I T1 )1 \ax 1r 11 1 1 1

+ +-

+ sinc + i cosc = 3 1 (I -
1lrl h r 1 1 1.1

Traugott, [19] and [20], performed a shock structure analysis by

eliminating the intensity in favor of the heat flux vector, which

had been assumed to be one-dimensional. The equations of motion

under the above conditions are:

S( + p (usin + vcos) = 0 (2.1)
by h 8x h r

(Bu bu Uv - 1 1
S+ -- + + -

ax ay 1+c M2 h ax

+ + 1 avR r C hy h. TJx (2.2)

+ 1 ([2 u } a usinxp vcosP])
3 h 2x h xb by J

uv b av Ku +-e 1 

-+ v ( u + vvr

x vby h ) 1+e p ay

+ 2K 2cosrpS+--_ + 33 by h r by
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- r

(u T 2e u ap _p 1 IF T
+ v T v - =PL a-

Ph 8x y 1+e h ax ay =R y 6Y

( " (2.4)
+r ) y h y 8x h 8x r 1 3 x

2eM v 2 + ) 2 + 2 us in + vcos 2

r B °

fu Ku 1 av 2 (1 h v + v
ay 1 ) Sx 3 h 3x by

(2-5)+--- siny + os C 3Bu2 (1 4 -

r a (Ti T a rY

p = pT , (2.6)

S= Tw , (2.7)

a = pTn, (2.8)
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where h = 1 + K(Y + y), r = B + (Y + y) cosp, 6= y-1/y+l - O0 (the

Newtonian approximation), M2 = p U 2 /yp >> 1, R = p Ua/i >> 1,

the Boltzmann number, Bo = p U C pTo/aTo = O(1), r = T /T >> 1,
-i

and the characteristic optical length, Bu-1 >> 1.

Along with the above equations of motion one additional equation,

in the form of a boundary condition, must be satisfied in conjunction

with equation (2.5). This equation is:

I = 3 Bu o (Ili m - 4fT B4) (2.9)
l im

where Ilim and are taken in the limit as they approach the
lim,Iownsre m bounday of,downstream boundary of the region, and TB is the temperature at the

upstream limit of the region immediately downstream. Equation (2.9)

is implicitly satisfied at each boundary.

12 JPL Technical Memorandum 33-687



Chapter III

THE EXTERIOR REGION OF THE FAR-FIELD PRECURSOR

With a body in hypersonic flow, traveling sufficiently fast so as

to induce electro-magnetic radiation, the flow quantities start devia-

ting from their freestream values prior to their encounter with the

"shock wave." The precursor effect is due to the generation of

electro-magnetic radiation in the shock layer, which is propagated

upstream at its characteristic speed of light.

The first region of the far-field precursor is the exterior

region. The scale thickness of this region has an order of magnitude

thickness, (Bu) - I , equal to 0(1010) body radii. Although this region

is two-dimensional, it will be assumed that it is one-dimensional in

order that analytic solutions may be obtained. This assumption is

valid since the changes in the flow quantities are small and therefore

would not significantly affect regions that follow downstream. This

region has the pressure and temperature varying as corrections to

their freestream values. The corrections to the velocity components

and density are very small but are included for completeness. The

intensity is scaled from its freestream value. The coordinates and

flow quantities consistent with the above description are:

y e (3.1)

-3
u = cosy + ue

-3
v = -sin + - ve +

M2JPL Technical Memorandum 33-687 13e

JPL Technical Memorandum 33-687 13



p 1 +r pe + -"" ' (3.2)

r-3
p = 1 + -- p +---

M2 e

-3T= 1 + T +---

I = 4r- 4 I +_.e

Substitution of (3.1) and (3.2) into the equations of motion,

(2.1)-(2.8), yields, to first order, the following:

Pe = Te ' Ve - Pe sin'o = O ,eee e p ,

-sin + - = 0 , -sinrrp - Y- = 0
e + e ey e

- Te 4 (3.3)
e 4

-sin - (I - 1)
bye  Bo ee

a2

e- 3( - ) .2 e
e

The solutions to equations (3.3) are:

4J
pe T 4 e e e p2 Te = Te 3 Bosin e ' e n2 e '

sin 4

1 e
e sincg e e sinr e (

I =1 + J e- 3  ee e
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where it should be noted, due to the one-dimensional assumption, that

J is not a function of x.
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Chapter IV

THE INTERIOR REGION OF THE FAR-FIELD PRECURSOR

The next region is the interior region of the far-field precursor.

In this interior region, the intensity is much larger than its free-

stream order of magnitude, but still small compared to the stagnation

order of magnitude it attains downstream. The pressure and tempera-

ture are still of their freestream order of magnitude and are scaled

correspondingly. The velocity components and density are again scaled

as the fluid mechanical aspects of this region are still small. The

scale thickness of this interior region is the same as that of the

exterior regrin; i.e., O(Bu ), but has an effective thickness order

of magnitude which is much larger. Hence the coordinates and flow

quantities have the following representations:

1
Y = Yj (4.1)

u = cose + u + --

v = -sinp + v +---
M23

P + Pi + --- (4.2)
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T =T. +---

I = 4-1 I . +---
3

Substitutions of (4.1) and (4.2) into the equations of motion

(2.1)-(2.8), yields, to the leading order, the following:

pj = T , v. - p sin~ = 0 ,

av. apj u. p
-sino -~ + - 0 , -sinc - Y = 0 ,

ay y by j by
(4.3)

BT.
)yj Bo j -j

1 3 3 .
ayj T n ay j) 0

The solutions are most conveniently found by transforming the inde-

pendent variables from y. to Tj.. Hence the solutions, in terms of T.j,

are:

p. = T. ,

p 2 T (4.4)
j 2 3j

sin cp

1
v. = T

J sir j
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.

u. = - --.-- T ,
j sin j 

= 3 Bo sin
Ii 4 (T j ) ,

T

= - f dT
J = T 3 Tn (T-1)

A.
j 4J.

where, for convenience, A. = 1 + B
S3 Bo sin

The solutions in the limit as yj - Ca are:

4J.
p T 1+ 3 Y
p =j =1I + T3 Bo sincp e

1
2 T-

sin c0

1v. Tj > (4.5)

y.
U. = _ --- T -j sin j

I. J. e-3 Yj ,

and in the limit as y.j 0:

pj = T =1
3 (J3 n yj)n

v. = 1 Tj (4.6)j sin:
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j s 2 j
sin .

u = - -- J T
j sinyp j

S= 3 Bo sinP 1
j 4 (3 n yj)l/n

The matching of the interior region of the far-field precursor

to the exterior region of the far-field precursor is accomplished

using the normal coordinate as the matching variable, i.e.,

= (K Z - where Bu X1 . Through the matching, it is

found that Jj = Je (not functions of x), Kj = 1//3 and the effective

thickness, Z ( = (1/Bu) log r3 .

JPL Technical Memorandum 33-687 19



Chapter V

THE NEAR-FIELD PRECURSOR REGION

In the near-field precursor region, the intensity and temperature

rise to their shock layer orders of magnitude, whereas the pressure

has risen to the order of magnitude it has in the middle region of

the shock structure. The thickness of this region, O(1/Burn)", is

much less than one, but is much larger than the order of magnitude

thickness of the shock structure. The velocity components and

density vary as corrections to their freestream values. Hence, the

coordinates and flow quantities have the followini representations:

x = x , y = eYr(Xr) + 1 Yr (5.1)

2
U = cosp U+ + ---

r

v = -siny + Gvr + ---

P = P r + "- (5.2)

p = 1 + cpr +

T = FT + --
r

I = 41 +---
r
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Substitution of (5.1) and (5.2) into the equations of motion,

(2.1)-(2.8), yields, to the leading order, the following:

vr - Prsincp = 0, pr = T

vr r rPr

-sincp +2 = ,

br r  r

-sin r " Y r = 0 , (5.3)
r r

8yr  r n 4

r

The energy equation retains the convection and radiation flux diver-

gence terms with the pressure gradient, heat conduction, and viscous

dissipation terms being of higher order.

The solutions to equations (5.3), in particular the energy and

transfer equations, are difficult to find due to their nonlinearity.

Although they are nonlinear, they can be solved since they can be

transformed into a modified Bessel equation. By letting

aA9 = (1/Tr ) a/ Yr and combining the two equations one obtains:

aTr 4 2Ir.4)
-sing 3Bo (5.

Integrating once and transforming from T to Tr as the independent

variable, by use of the energy equation, yields:

JPL Technical Memorandum 33-687 21



T = (I - T ) -T (5.5)
r

where K = 3Bo sin /16 . Letting Z = T 2 the equation becomes

dZ 2 - Z2 ) (5.6)
r

which is the Riccati equation. The Riccati equation can be trans-.

formed into the Airy equation (a modified Bessel equation) by letting

Z = (K/2) u'/u , where u' = du/dIr . Thus equation (5.6) becomes:

u" I u= (5.7)

The solution of the Airy zquation is in terms of modified Bessel func-

tions. Obtaining the solution of (5.7) and transforming bacA into

temperature yields, after imposing the condition that T - O as
r

I - 0:r

4 3/2ii I
T = 1 2/3L3K r (5.8)r r 4 3/

where the numerically subscripted I is a modified Bessel function

and the letter subscripted I is the intensity.

Therefore the general solutions for the near ptecursor region,

in terms of I, are:
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F1 2/3 Kr r 4 3/

Pr =T r

v 2 T (5.9)r sin r

2
r =  2 r

sin cp

2 Y'r
u =--Tr sincp r

T
r

Bo si nt dT 7
Yr =  4 ni .

The solutions in the limit as yr -o are:

=i/ + -'"Pr T Tr +r)

2
V= Tr sincp r

2
Pr Tr (5.10)

sin rp

2Y'
ru =- TTr sirp r

S3 Bo s in 1 +

r 4 (/3 n yr)l/n
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and in the limit as yr - 0 are:

Pr T r r (x )e 4 )Y+ -
Pr r =  r(Xr Bo sin r r r

2
r sincp r

2
Pr =  2T r  , (5.11) °

sin cp

2Y'
r

r sin r

r = Jr(xr) + b (x) r Yr

Applying the boundary conditions at yr = 0. the folloing re-

lations for Tr and b in terms of W were found:r r

r r r l3/l
-1/3 3K

and
.br  3 Bo sing

r 4 r

The matching of the near-field precursor region to the interior

region of the far-field precursor is done with respect to the normal

coordinate, i.e., y2 = (- CYm 2 where Bu 2 . 0 and

Burn 2 . The matchings are found to be identical, and thus

no new constants are determined.
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Numerical results of this region are also presented in Figure 4,

in the form of a plot, along with.the numerical results for the radi-

ation relaxation region, to be discussed later. In this figure the

fluid mechanical shock wave is represented by a discontinuity. These

results can be compared to the results of Heaslet and Baldwin (11,

for e O, given in Figure 1.
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Chapter VI

THE OUTER REGION OF THE SHOCK STRUCTURE

The next region downstream from the near-field precursor region

is the outer region of the shock structure. The scale thickness of

this region is 0 (fW/R). This scale thickness is larger, by a factor

F , than the conventional outer region, since the temperature has

risen to its shock layer order of magnitude in the near-field pre-

cursor due to the effectiveness of radiative transfer. In this re-

gion, all variables are scaled as constants plus small corrections.

The fact that the pressure and temperature are varying as corrections

to constant values, as opposed to variation as free variables. is the

essential difference between this outer region and the conventional

outer region. The coordinates and flow quantities, therefore, have

the following representations:

x = e Y = Y(xo -Yo ; (6.1)

u = coscp + 1/u + -

v = -sin + 03P v +.

P = ( 0(x ) + P0 )

p = 1 + 3 / 4 P  + --- (6.2)
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T= r (8(x 0) + T +

I -- 4 (o(xo) + 0

where 0 = Burn+w/R

Substitution of (6.1) and (6.2) into the equations of motion,

(2.1)-(2.8), yields to the leading order the following:

S=8 P =
o o o o

O  p sinp = 0,

sin + 2 1-3/4P ao 4 W ao

-sincp- + 28 Q (6.3)

Byo  bYo  3 o 2 0

o o 0 o y

bYo

2n

0 0

i o
eo

The solutions to (6.3) are:
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I 6sP sine

o To Joo o (Jo
9o

4 on(Jo % ) 4 On + 4)
Bo sin o +
Bo sin Bo P sin2

v =A exp 3sinp

0

f3o o exp 0 Yc
2sinp( - P) 0

8en 4) 8 n+WT 1
0- -o -0o , 1.r

Bo sin 0 Bo sin cp

vo (6.4)0

Po sinc P

Uo = wo(Xo) AO e s O

- 0 1/AP Y' exp- sin

4

28 A 4P/3
2 1-1/P y 0oop) ep Psin y

6 e (J - o0
4 ) 6 n+( _o4

0- -- ( + )
Bo sin2 cp Bo sin

I = a + b En
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The matching of the outer region of the shock structure to the

near-field precursor is performed using the normal coordinate as the

matching variable, i.e., Y3 = (- Yo 3 where Buf X 0 and

(rw/R) 3  . During the course of the matchings it is found that

eo(xo) = er(xr) Jo (xo) Jr(xr)

and

bo(X ) = br(x) = 3Bo sin er (6.5)

It shou3d be kept in mind that J and Er are not independent con-r r

stants. It was also found, through the tangential velocity matching,

that Y' = 4/3 Y' . This is interesting, since this result implies
0 r

that the near-field precursor region decreases in size as one pro-

ceeds away from the stagnation streamline. Stated more simply, the

near-field precursor region is a radiation "cap" that sits ahead of

the shock wave and becomes smaller in relative size as one moves

along the shock away from the stagnation streamline and then finally

disappears. Of course, the present theory breaks down at some point

prior to the disappearance of the near-field precursor, since it is

assumed that this region is to be of significant size.
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Chapter VII

THE MIDDLE REGION OF THE SHOCK STRUCTURE

The next region downstream from the outer region of the shock

structure is the middle region, or dissipation region, of the shock

structure. The scale thickness of this middle region is 0(F'/R),

which is the same as for the outer region, but has an effective

thickness which is much larger. The pressure and temperature are

now free to adjust upwards, due to the fluid mechanical aspects of

the shock wave. The velocity components and density are still of

their freestrcam order of magnitude. The intensity is still scaled

as a constant plus a correction, since the region is optically thin,

which excludes any change of order one or greater. Thus, the coordi-

nates and flow quantities, which (except for the intensity) are the

same as for the nonradiating problem, have the following represen-

tations:

x x , Y = Y() + -R- ; (7.1)

u = u +---
m

v = v + ---
m +

p = 1pm t --- 9 (7.2)

P =Pm ---
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T = FT +---

I = 4 (J ) + R I + ---

Substitution of (7.1) and (7.2) into the equations of motion,

(2.1)-(2.8), yields to the leading order the following:

m =m Tr,

Pm Vm =-sinp

4 Vm .2
Vmsinp + 3 rm m = -sin ~ , (7.3)

au
;u mu sinp + Tm W = cosy sinp ,

m m Ym mm

8 T T + 4 ( v
Ym m ( ym m ym mY

Ym pTn Tmm

Equations (7.3) are most easily solved by using a variable transfor-

mation. A modified Crocco transformation is used in which the inde-

pendent variables (Xm, ym) are changed to (xm, Vm) where

V = v + sin. (74)m m

Equations (7.3) in terms of the new variables (x , Vm) are:
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Pm= Pmm ' Pvm -sin:p ,

U UUm 4 m
= 0 U = - cosbV 3 V 0  m m

2 v +  + av (75)avm  m m

aym 4 Tm
-+-- =0,
V 3V 

i mm

mm ( m

The solutionsto (7.5) are:

= sinp
im v

Ur COS m m + v ] 4/3

mm

(7.6)

VmmTo

4 T M dv
Ym = Lm 3sir S i + v

-sir P + A
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Vm n+w
4,b (x) Tm

m =am(Xm) 3sinp sin +

-sincp + A
m

where now em appears in the solution to the temperature. It is

needed since the gas is preheated due to the precursor effect.

The matching of this middle region to the outer region of the

shock structure is most conveniently done with respect to the normal

coordinate, i.e., y (-eYm-KmZ +y) 4 where (R/F ) -. and

(R/ )Km >> (R/r)- . It is also required that (eR/r w ) - o so

that the normal and tangential velocity components will match for

P> .. To perform the matchings, the solutions of equations (7.6) in

terms of (x mYm) as Ym - (R/rW)K mZ "- are found to be:

sin
Pm 3sin

sinp - Am(x m ) exp - 4  Ym
m

4/3 sine
um = cosc + w A exp - Ym

mm ) m

T ~e + s A 4P/3 Psip

m m m.m .w Ym
m

pm m pT

v = -sin + A exp- 3sin

m

I = am + b em fm
JPL Technical Memorandub 33-687 33m
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Performing the matchings it is found that

Jm(Xm) = Jo(Xo) = Jr(xr) ,

Er(x) = 0 (xo) r (xr) , (7.8)

Sm(xm) = S (x) , A(x = Ao(y) ,

bm(x) = bo(Xo )  - 3Bo sin er

It is also found that the restriction for matching on-the Prandtl

number of < P < is required as it was for the nonradiating pro-

blem. The effective thickness is found to be Zm (PW/R)log R/BuFn+W

with K = m/Psincp,
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Chapter VIII

THE INNER REGION OF THE SHOCK STRUCTURE

The next region of the shock structure is the inner region which

is thinner than the middle region by a factor s. The tangential velo-

city component and temperature have already reached their stagnation

orders of magnitude and are therefore scaled as corrections to their

middle region values. The density finally rises to its stagnation

order of magnitude, which must be accompanied by a corresponding rise

in pressure and a decrease in the normal velocity component. The in-

tensity is again scaled as constant plus a small correction, since

this region is also optically thin. The coordinates and flow quan-

tities in this inner region have the following forms:

x = x i , y = Yi(x + (8.1)

u = W.i(xi) + eu. +

V = ev. +---

p.= (r/)pi +

= (1/e)i + --- , (8.2)
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I =4 (J.(x.)+ + --- .

The equations of motion (2.1)-(2.8) consistent with the above

expansions are:

Pi Pi i iVi = -sinc

ei 4 av =sin ,
-2sing V sin3 cp

1 3 i

bu.
- - sin ~ i (c ( 8.3)

= sinc Sin

by Pii n by,

where Vi = vi - Y W.. The solutions to these equations are:

. isinu
Pi Vi

Pi -- Pi(i '

ui =wi(xi) - sinp (coscp - Wi) " (8.4)
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Ti = Si(xi) - Psin L (sin2 - i + E)
1 i m

+ (cosp - W.)2] IYi Yi

4n+w 20.
I. = a.(x.) ++ og

i i 3sir i sInO

sin 2  (V 2 sin 2e.
+ ) 1 = exp -Eci (V + 1)

E) 1+ i i

The matching of the inner region to the middle region is most

easily accomplished by using the normal velocity as the matching

variable, i.e., = v/8 5 where 3 O and 3 . In perfor ing

the matchings, it is found that:

Ji(x.) = J m(m) = Jr(xr)

bi(xi) = bm(xm) = - 3BosinQ r (x )

-e

4b (xr) pmT n+
a(X ) = r mm dv
m m 3sinrp sinT + v m

-sinp + A (8.5)

(cos0p - Wi )
w (x ) - 4/T

(sinp)

and p
P . 2 P

mi _ (m + 3-2P sin , + 2(2-) (cos - Wi)

m  m  (sip)4 P/ 3

JPL Technical Memorandum 33-687 37



Chapter IX

THE RADIATION RELAXATION REGION

The region that follows the inner region of the shock structure

is the radiation relaxation region. This region was not present in

the nonradiating problem, since there was no need for a region in

which radiative equilibration would occur. The rise of radiative

intensity in this region is accompanied by a decrease of temperature,

Heaslet and Baldwin [11]. This decrease in temperature, or cooling

of the gas, is referred to as radiative cooling. This transfer of

energy, in the form of temperature, out of this region is responsible

for the precursor temperature rise before the shock wave. The flow

quantities in this region have all reached their shock layer order of

magnitude, and are therefore scaled as such. The scale thickness of

this relaxation region is of the order of the photon mean free path

at shock layer conditions and is thus equal to O(c/Burn). As this

region is mainly a radiation-dominated one, it would be expected that

all three terms of the transfer equation are present; i.e., gradient,

absorption and emission terms. This is, in fact, the case, as will

be seen in the equations.

The coordinates and flow quantities which describe this radiation

relaxation region are:
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x y = xe ax - ; (9.1)
Bun

2
U = W + u +---

a a

v = ev + ---

P + p --- (9.2)

a P

1

T = T +---
a

I 41 +--- .a

Substitution of equations (9.1) and (9.2) into the cqationz of

motion, (2.1)-(2.8), yields:

(PaVa ) - Y' (PaWa) = 0
a ava a aya

-sinq ]a- 2 Y ' -- a = 0
a a

av a  apa-sint a + 2 6Y = 0 , a a (9-3)
aa a

aT
i a =4 Tn T 4 )

ay Bo as a a

a 1 a n 4
aYa PTan ay = 3 PaTe (Ia - T )
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The solution to these equations was carried out numerically and a

representative solution is shown in Figure 4, as mentioned before.

In order that upstream and downstream matchings might be obtained,

the solutions in these limits must be found. The solutions in the up-

stream limit, as ya Y , are:

I = Ja(x) + ba(xa) Ra 8 n- (Ya -

T =6 2sin n-i ( Y )
a a Bo a a a a ,

Pa (cl - v ine) ,

An

Pa T (9.4)

a sin 2 + 2Y'a )

v =- ip + Y W .

I = (x a (x ) ex 3 ( n-i

T + 4B / 2 n-i
a B 3 Bo sin exp 3 eB

Pa =  (Cl - vasin) , (9.5)

na
Pa T

a
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Ua = (c 2 + 2Y' ) ,siny 2 a

S sin + y, W
a Pa a a

The matching of the radiation relaxation region to the inner re-

gion of the shock structure is accomplished using the normal coordi-

nate as the matching variable, i.e., y6 
= (cYa - ) 6 where

(R/sr)f 6 - c and (Burn/)X 6 - 0. The matching establishes the up-

stream boundary conditions for the radiation relaxation region, and

therefore this matching finds the "fluid-mechanical" shock conditions.

(It should be noted, as mentioned before, that strict matching for

these two regions was not accomplished since higher order terms must

be included. The reader is again referred to Bush [4] for this match-

ing.) Through performing these matchings the following relationships

are found:

sin2
e(x) e.(x ) = 2 m

Wa(xa =i(xi) = cosy , (9.6)

2

and

ba(xa) = bi(xi) = -3 Bo sir

An interesting result is that the pressure is constant, to leading

order, in this region. This fact was first .realized by Goulard [10,

and later discussed by Penner and Olfe [16]. It should also be noted
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that the tangential velocity and pressure have attained their Rankine-

Hugoniot .conditions at the start of this region, whereas the tempera-

ture is above the Rankine-Hugoniot value of sin 2p/2 by 8m. Since gm

is also equal to the amount of temperature rise before the shock, due

to precursor radiation, it can be seen that the temperature jump

across the fluid mechanical shock only is Rankine-Hugoniot to the

leading.order. In other words, the temperature jump across the shock

is sin 2p/2, i.e., from Em to Em + sin2 /2. In the present analysis

the equations of motion in the radiation shock structure and fluid

mechanical shock structure are one-dimensional, and consequently the

conservation of mass, momentum, and energy must be maintained in the

hormal direction. This fact means that the jump conditions across

the radiation shock (with the fluid mechanical shock imbedded within)

must also be Rankine-Hugoniot, i.e., a temperature jump from 0 to

sin2 /2. Therefore the downstream value foi the temperature, GB, is

given by:

B = 8i - 8 = 2 (9.7)

In this analysis the radiation and fluid mechanical shock struc-

tures were one-dimensional, as mentioned above, as a consequence of

the assumption that l/Burn << 1. If, on the other hand, the assump-

tion of 1/burn = 0(1) were made, the radiation structure would beccme

two-dimensional. Two-dimensionality in the radiation structure allows

transfer of energy in the longitudinal direction. Therefore, conserva-

tion of energy in the normal direction is therefore no longer a
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requirement, and this manifests itself in that the Rankine-Hugoniot

conditions across the radiation structure are no longer valid. The

jump conditions across the radiation structure are less severe with

energy loss in the longitudinal direction. It should be noted from

physical considerations that the fluid mechanical shock structure,

imbedded within the radiation shock structure, is still one-

dimensional under the assumption of 1/BuFn = 0(1). Therefore,

Rankine-Hugoniot jump conditions across the imbedded fluid mechanical

shock structure apply locally in both the one-dimensional and two-

dimensional cases, although the initial and final conditions are

different. In the two-dimensional case, the radiation relaxation re-

gion thickness is O(e/BuFn) = O(e), which is equivalent to the

thickness of the shock layer, and therefore the radiation relaxation

region extends all the way to the body and has terms common to both

the radiation relaxation region and shock l&yer in the one-dimensional

case.
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Chapter X

THE SHOCK LAYER

The region between the radiation relaxation region and the body

is the shock layer and it is inviscid, since K = FW/R - 0. In the

case under consideration, the shock layer is in radiative equilibrium

and the orders of magnitude as determined by Bush [3], Chester [5],

and Freeman [7 are appropriate. Thus the coordinates and flow quan-

tities.have the following forms:

x = xL Y = eYL , (10.1)

S= L + --- v = +---

(10.2)

F 1
p PL +  

P PL +

T = F TL + -- 4L +

The leading terms in the equations of motion (2.1)-(2.8), con-

sistent with the above expansions, are:

PL L L '

ax (B L uL) + a (B PL L) 0L L

aPL 22 -L L 'L = 0 (10.3)
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pL (L + ) = 0LL L YL

4
L =TL 

A transformation of variables from(XL, yL) to(SL, tL) where

p x + L - U

L =L cosp a

and
TL  uL

t L = ( yL )

yields tne following solutions for the inviscid-shiuck ia.y-:

TL = - tL22 ] ,

a

tL

T (tia) PL (lo.4)

L B(tL ) T L-w
L

L 2 2.v

r 0
YL B(o)(l-o2 ) B(o) dhB0 v c(ov) 1 - B (_ - dh

B()(l-o 2 e n8
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IL = (1 - tL 2)

The matching of the shock layer to the radiation relaxation region

was carried using the matching variable y7 
= (eYL - )/ 7 where

(Burn/e) -7 and X7/6 - O. These matchings give the "radiative"

shock conditions. Thus the shock layer boundary conditions were

found to be:

uL (XL, Y = Wa (x a ) = cosp ,

PDL (X' Y,) : n(X) sin cp

PL (XL' YL ) = i

.22

TL (XL, YL ) = 1.2

L (XL' YL) = Y cosT - sinp

. 8
sin w

IL (xL' YL) 1sin-
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Chapter XI

THE BODY LAYER

The coordinates and expansion appropriate for the body layer are':

x = xc , y= 63/2 c ; (11.1)

u = e/2 U + --

V = E v + ---
c

P =Kpc +-- (11.2)

e c

T =FT c+-C

I = 41 + -
C

The equations of motion consistent with the above expansions are:

P = p c T

Lx c(B Pc ) + Y (B pc c) = 0

SPc

c) - , (11.3)
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3u au ap au
p (L C + - ) + 2 -D ( T C)

BT T DT

c c C

where

65/2R
D -

The boundary conditions, obtained from the matching of the body

layer to the inviscid shock layer, in Crocco variables 8 = (,
S-C

t = U_/cOSCP, . ec ), are:

PC (se - m) = p(s

Tc (Sc,t c  = (

Tc ( c - ) 21 P(S) , (11..4)

I (Sc ,tC ) = 1

The solutions to equations (11.3) for the inviscid case, D - 0,

consistent with boundary conditions (11.4) are:

PC (se,t) Pc(s) ,

Tc (s' c -t =
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T'c C (sc't) = 2 P P(s)

(s t coscp t -t (s (115)

cos c

The boundary conditions for the viscous body layer are satisfied

in the same way as done by Bush [3]. However, since the viscous body

layer solutions are numerical, they will not be presented here.
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Chapter XII

THE VISCOUS BOUNDARY LAYER

The coordinates and flow quantities for the viscous boundary

layer are:

S= BL Y YBL (12.1)

u = e2 UBL +

1,3/2rOw 2
V R VBL +

P = PBL ' (12.2)

1

T = TBL + ---

I 4 L +

The equations of motion resulting from the above expansions are:

PBL PBL TBL

(Bp uB ) + (Bp BL BL) 0
'BL cSyBL

(12.3)

PBL

'YBL
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( UBL + UBL BL UL +2 BL

L BBL )xBL BL YBL axBL 6YBL BL yBL

BL BL 1 a T BL

PBL (U L BL V aBL (BL (TBL YBL )

BL = TBL "
BLTBL

The boundary conditions at the outer edge of the boundary layer,

obtained from matching with the inviscid body layer, are:

TBL (BLYBL - m) = 42

PBL (XBL'YBL ) = PBL(BL)  Pc(xc) (12.4)

uBL ( 'YBL L - = 2 n 2rc(xc)] '2

'BL (XBL'YBL - ) =
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Figure 1. Results of Heaslet and Bald-
win 11 for the strong shock case.

JPL Technical Memorandum 33-687 55



the two far-field precursor regions
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fluid mechanic
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Figure 2. Schematic of the regions of flow.
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Figure 3. The coordinate system.
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Figure 4. Numerical results of
the radiation shock structure
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APPENDIX

Numerical Solution of the Radiation Shock Structure for

Four Values of the Boltzmann Number

The energy and transfer equations for the near-field precursor

and the radiation relaxation region are solved numerically for a range

of Boltzmann numbers. The equations to be solved in the near-field

precursor, see equations (5.3), are:

6T
-sinc - (I T)

yr  Bo r r r

(A.1)

a T r 3 Tnn (I T4
2yr Tn 8r/ r r r

r

and in the radiation relaxation region, see equations (9.3), are:

-sin a 4 p Tn  4a
ya  Bo a a (a

Sa 3(A.2)

a a

The boundary conditions for equations (A.1) are:

T - 0 , Ir - O as Yr -+ +

and (A.3)

Tr 4r I Jr as yr 4 0

and the boundary conditions for equations (A.2) are:

T -0 , Ic
a B a B as Y -
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and (A.4)

T a , I -J as y -'

A variable transformation of 8/8 r = (1/T) ;/ayr and 2/b'a =

(1/pa nT) 6/aya, respectively, to equations (A.1) and (A.2) makes

them more adaptable to numerical solution. After non-dimens'ionali-

zation of the temperature by 0 B, i.e., T = T/8B, and of the intensity

by OB, i.e., w = I/ , equations (A.1) become:

dw 3T

ciT 16 4r (W -2 r
r r

(A.5)

dr 1

subject to boundary conditions:

S-)+ m O as 7 -0

and (A.6)

r r r/6as Tr r B ,

and equations (A.2) become:

dwa  3 2 a - 1)

d7a 16 (Wa- T 4)

(A. 7)

a 1
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subject to boundary condition:

a * - m , w a-I as - 1W as -

and (A.8)

-a 0 wa  Jr/eB asa /eB = er/eB + 1

where = Bo sinP/B.

Solutions to equation (A.5) and (A.T) subject to boundary condi-

tions (A.6) and (A.8), respectively, are given in figures 5-8 for

values of § = 1.6, 4, 8 and 16 which correspond to values of Bo =

0.2, 0.5, 1.0 and 2.0 for sin = 1.
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